Adaptive cubic regularisation methods for unconstrained optimization. Part II: worst-case function- and derivative-evaluation complexity
نویسندگان
چکیده
An Adaptive Regularisation framework using Cubics (ARC) was proposed for unconstrained optimization and analysed in Cartis, Gould & Toint (Part I, 2007). In this companion paper, we further the analysis by providing worst-case global iteration complexity bounds for ARC and a second-order variant to achieve approximate first-order, and for the latter even second-order, criticality of the iterates. In particular, the second-order ARC algorithm requires at most O(ǫ) iterations to drive the objective’s gradient below the desired accuracy ǫ, and O(ǫ), to reach approximate nonnegative curvature in a subspace. The orders of these bounds match those proved by Nesterov & Polyak (Math. Programming 108(1), 2006, pp 177-205) for their Algorithm 3.3 which minimizes the cubic model globally on each iteration. Our approach is more general, and relevant to practical (large-scale) calculations, as ARC allows the cubic model to be solved only approximately and may employ approximate Hessians.
منابع مشابه
Adaptive cubic overestimation methods for unconstrained optimization. Part II: worst-case iteration complexity
An Adaptive Cubic Overestimation (ACO) framework for unconstrained optimization was proposed and analysed in Cartis, Gould & Toint (Part I, 2007). In this companion paper, we further the analysis by providing worst-case global iteration complexity bounds for ACO and a second-order variant to achieve approximate first-order, and for the latter even second-order, criticality of the iterates. In p...
متن کاملEvaluation complexity of adaptive cubic regularization methods for convex unconstrained optimization
The adaptive cubic regularization algorithms described in Cartis, Gould & Toint (2009, 2010) for unconstrained (nonconvex) optimization are shown to have improved worst-case efficiency in terms of the functionand gradient-evaluation count when applied to convex and strongly convex objectives. In particular, our complexity upper bounds match in order (as a function of the accuracy of approximati...
متن کاملAdaptive cubic regularisation methods for unconstrained optimization. Part I: motivation, convergence and numerical results
An Adaptive Regularisation algorithm using Cubics (ARC) is proposed for unconstrained optimization, generalizing at the same time an unpublished method due to Griewank (Technical Report NA/12, 1981, DAMTP, Univ. of Cambridge), an algorithm by Nesterov & Polyak (Math. Programming 108(1), 2006, pp 177-205) and a proposal by Weiser, Deuflhard & Erdmann (Optim. Methods Softw. 22(3), 2007, pp 413-43...
متن کاملOn the Oracle Complexity of First-Order and Derivative-Free Algorithms for Smooth Nonconvex Minimization
The (optimal) function/gradient evaluations worst-case complexity analysis available for the Adaptive Regularizations algorithms with Cubics (ARC) for nonconvex smooth unconstrained optimization is extended to finite-difference versions of this algorithm, yielding complexity bounds for first-order and derivative free methods applied on the same problem class. A comparison with the results obtai...
متن کاملLANCS Workshop on Modelling and Solving Complex Optimisation Problems
Towards optimal Newton-type methods for nonconvex smooth optimization Coralia Cartis Coralia.Cartis (at) ed.ac.uk School of Mathematics, Edinburgh University We show that the steepest-descent and Newton methods for unconstrained non-convex optimization, under standard assumptions, may both require a number of iterations and function evaluations arbitrarily close to the steepest-descent’s global...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Program.
دوره 130 شماره
صفحات -
تاریخ انتشار 2011